
GitHub
Keeping your code organized, backed-up, and easy to transport to any

remote computer

What is GitHub?
• GitHub is a software system for keeping track of changes you make to

a code project.
• It is also a place in "the cloud" where you store a safe copy of your

code, and from which you can easily distribute your code to a remote
machine.
• Even if you are only working alone on your own laptop it is valuable to

incorporate GitHub into how you work.

First step: get an
account on GitHub
• Sign up for a GitHub account:
• https://github.com/
• You have to make up a

username. I use
"parkermac". You can add
more information to your
profile if you like.
• It's free!
• Note: by default the code on

GitHub is publicly available.

https://github.com/

Then get some software
for your computer

• Download and install the "GitHub
Desktop" software on your
personal computer, available for
both Mac and Windows.
• https://desktop.github.com/

It makes this icon,
a purple cat

The app looks like
this

https://desktop.github.com/

Launch GitHub Desktop and...

• In GitHub Desktop -> Preferences, log into your GitHub account
• In GitHub Desktop also do "Install Command Line Tool..."
• (everything you do by clicking in the Desktop app you can also do

from the command line, but for now we will stick to using the app).
• Now you have all the tools in place, but you still need to put a code

project into Git...

Put your first code project into git
• Choose a folder that already has

some code in it (OK for it to have
subfolders - but it should all be
code and text files, not data or
output), or choose the name of a
new folder that you will put code
into later.

• Launch the GitHub Desktop app
on your computer

• Do File -> New Repository...
• And you will get this box ===>

1. Type the name of the
existing folder, or the
new folder you want to
create

2. Add some words
describing it

3. Use Choose... to navigate to
where the folder is, or where
you want it to be (the parent
directory of the one where
you project is). No need to
initialize with a README.

4. For Git Ignore choose: Python

5. For License choose:
MIT License

6. Then click this!

public or private?
• When you make a new repo and

publish it to GitHub you now can
choose to make it public or private
• It used to be that you had to pay to

make it private - that it no longer
the case.
• I prefer to keep things public by

default, except under
circumstances where I really need
them to be private.
• For this class I'd suggest you make

your classwork repo public, so I can
see it if needed, but the choice is
up to you.

Unclick?

What you did...

• You made Git on your computer know that you want it to keep track of the code
project in this folder
• In that folder it created a hidden directory called .git. That is where is stores

information on all the changes you make to code there. You never need to look
in this.
• I did not suggest adding a README because it just adds an empty file in

"Markdown" format. I'd prefer that you write your own README as a text file
because it is simpler and more portable.
• You added a LICENSE text file that says anyone can use this code
• You added a hidden text file called .gitignore that has a long list of file types for

which Git will not keep track of changes. One of these would be the ".pyc" files
that Python automatically creates for any module you write - it is a compiled
version of that module.
• If you had any code in the folder to begin with it also automatically "committed"

them with the message "Initial commit"

Next you want to push this repository to GitHub in the cloud,
using the GitHub Desktop app on your laptop

If you need to
save any

changes locally,
you type in a
Summary and
then commit

Make sure you
are on the

"Changes" tab
(the History tab

shows past
changes)

Then click on the
"Push origin"

button to send a
copy of your

code project to
the GitHub cloud

You can add more detail
in the Description box,
but it is not required

Concepts &
Vocabulary

• Your code project is just a folder (and any subfolders) with code and other text files.
• When you tell git to make this code project a "Repository" then git adds a hidden folder ".git" to your folder where it

keeps a copy of your files and a history of all the changes you make. That is the "Local Repository" in the figure
above.

• "repo" is the slang for Repository. Use it in casual conversation with friends so they will know you are cool.
• Every time you change a file in the folder (add, delete, rename, or edit) git will keep track, and then when you

"commit" the changes they will be part of your local repository.
• Then you "push" your local repository to the cloud: your GitHub account. Mysteriously this remote repo is always

referred to as "origin", even though the code actually originated from your laptop.
• Finally you can "clone" the remote repository to any other machine (like fjord) and it will appear as a folder with

your code in it. If you want to update the code on the remote machine you just "pull" it from the remote repo by
using the command: "git pull". You do this using the linux terminal and you have to have navigated to be inside
the folder containing the code project.

• We'll go over the details of the clone step in a few slides.

Figure from: https://rubygarage.org/blog/most-basic-git-commands-with-examples

Code project
on your laptop

Copy of code project
on remote machine,

like fjord
GitHub in
the cloud

https://rubygarage.org/blog/most-basic-git-commands-with-examples

• A very simple "one-way" workflow consists of:
1. edit code on your laptop and save the changes
2. commit the changes using GitHub Desktop
3. push the changes to the remote repo using the "Push origin" button in

GitHub Desktop
4. on the remote machine update the code by using "git pull" from the

command line
5. now you can run the code on the remote machine, confident that it is

exactly the same as on your laptop. Of course for this to work your code
has to be written to work on the remote machine.

Code project
on your laptop

Copy of code
project on remote

machine
GitHub in
the cloud

step 3

step 4

Every time you change a file in the folder (add, delete, rename, or edit) git
will keep track

Here is what the app looks like
after I made (and saved) an edit
to one of my programs in the
repo.

Note that in the right panel it
shows a focus of exactly what
lines changed.

If you feel you are done with
making changes in your current
editing session (maybe at the
end of the day) you:
1. add a summary of the

changes
2. Click on "Commit to master"
3. "Click on Push origin"

More git lingo: "master"

• The term "master" refers to the "branch" of the repo you are working
on. In GitHub you can make other branches, e.g. to test out some
new code while you still want the old code to be functional. We will
not be using branches in this class, but you may find them useful
sometime.
• For our purposes, you can just think of "master" as meaning "the

version of my code project that has the most recent changes
committed".

cloning
• In order for "git pull" to

work on the remote
machine you first have to
"clone" the repo to that
location.

• Go to your github.com
account and open your repo
there

Click on the
Clone or

download
button

Then copy the link it
makes by clicking on

the clipboard icon

Cloning - last step

• Finally, logon to your remote machine (fjord) and cd to where you want the cloned repo to end up
- e.g. /data1/effcom/[username]/

• and then type:
• git clone [paste in the URL you copied]
• and your directory will appear, full of your code!
• If you make new changes on your laptop, commit and push them, then all you have to do on fjord

the next time is type:
• git pull
• from inside the directory you made, and then code will be updated to the most recent master

version.
• Note: if you created your repo as private, then you will likely have to issue the command:

• unset SSH_ASKPASS
• before doing git clone [...]. Then it will ask for your GitHub password.
• You can add this as a line in your .bashrc on fjord.

My own cloning screen shots, on fjord:

Cloning

Now the directory "pmec"
exists

and pmec has my
code in it

When I try to use
"git pull" from

inside pmec it tells
me it is already up

to date.

Note: if you put the repo in the wrong
place, just delete it and start again. Git
won't mind.

Resources
• This one is the best Git tutorial I have found, although it does

everything from the command line. Nonetheless, very clear on the
concepts:
• https://rubygarage.org/blog/most-basic-git-commands-with-examples

• General advice in installing Git anywhere (e.g. in linux):
• https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

• Another tutorial from Software Carpentry
• http://swcarpentry.github.io/git-novice/

• And some thoughts about collaborating using GitHub (which we will
get to in the second Git lecture):
• https://uoftcoders.github.io/studyGroup/lessons/git/collaboration/lesson/

https://rubygarage.org/blog/most-basic-git-commands-with-examples
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://swcarpentry.github.io/git-novice/
https://uoftcoders.github.io/studyGroup/lessons/git/collaboration/lesson/

