GitHub

Keeping your code organized, backed-up, and easy to transport to any
remote computer

What is GitHub?

* GitHub is a software system for keeping track of changes you make to
a code project.

* It is also a place in "the cloud" where you store a safe copy of your
code, and from which you can easily distribute your code to a remote
machine.

* Even if you are only working alone on your own laptop it is valuable to
incorporate GitHub into how you work.

First step: get an
account on GitHub

e Sign up for a GitHub account:
 https://github.com/

* You have to make up a
username. | use
"parkermac”. You can add
more information to your
profile if you like.

e It's free!

* Note: by default the code on
GitHub is publicly available.

® ® o parkermac (Parker MacCready) X m Parker MacCready Homepage X \ +

< C { @& github.com/parkermac @ % B o s * :

| i1 Apps M Gmail P Calendar @ Contacts & Drive [EJ EffCom [E3 LiveOcean [E3 News [E3F Weather » B3 Other Bookmarks

W) s)
e
Overview Repositories Projects Packages Stars Followers Following
\
Popular repositories Customize your pins !
ol LiveOcean energy
J LiveOcean forecast system Matlab code for ROMS energy budgets. B
OMATLAB W2 ¥1 @ MATLAB
al
alpha shared
= @ Setstatus alpha for tools !!
@ MATLAB ® MATLAB
- Parker MacCready
parkermac 1
post_tools pandora n
Edit profile MATLAB plotting code for ROMS files
| am a professor in the School of @ Python ® MATLAB
Oceanography at the University of
Washington in Seattle.
&4 p.maccready@gmail.com 289 contributions in the last year Contribution settings ~
@ http://faculty.washington.edu/pmacc/
Sep Oct Nov Dec Jan Feb Mar Apr B
* EQ o
| |
[]| |
| |
| O | E
[|]
[| |
Learn how we count contributions. Less HE More

Contribution activity

April 2020

https://github.com/

Then get some software
for your computer

* Download and install the "GitHub
Desktop" software on your
personal computer, available for

both Mac and Windows.
e https://desktop.github.com/

It makes this icon,
a purple cat

ptools v ¥

6 changed files

112
obs_ecy/plot_obsmod_map.py [¢] 113
obs_ecy/plot_obsmod_map_2.py [¢] 114
obs_ecy/plot_obsmod_scatter.py

obs_ecy/README.txt
tide_obs_mod/plot_map_validation.py

tide_obs_mod/plot_validation.py

‘-‘ Summary (required)

Description

g Current Repository oo Current Branch + o Fetchorigin
master */ Last fetched just now

E£| An updated version of GitHub Desktop is available and will be installed at the next launch. See what's new or restart GitHub Desktop.

Changes 6 History obs_ecy/README.txt [*]

@@ -112,7 +112,14 @@ Input: ptools_output/ecology/ObsMod_cas6é_v3_lo8b_2017.p
112 Qutput: a scatterplot of all data (for three depths)
113
114

-* plot_obsmod_map.py makes plots that are map summary info about fields at th
ree depths, comparing modeled and observed fields.

+* plot_obsmod_map.py [OBSOLETE] makes plots that are map summary info about f
ields at three depths, comparing modeled and observed fields. This makes circ
les to compare obs-mod, with area proportional to value. I decided I did not
like them, and went to version _2 below.

+

+Input: ptools_output/ecology/ObsMod_cas6_v3_lo8b_2017.p

+

+Output: ptools_output/ecology/obsmod_maps/cas6_v3_lo8b_2017_DIN.png for examp
le

+

+* plot_obsmod_map_2.py makes plots that are map summary info about fields at
three depths, comparing modeled and observed fields. This one uses colored si
de-by-side boxes for the comparison.

Input: ptools_output/ecology/ObsMod_cas6_v3_lo8b_2017.p

The app looks like
this

https://desktop.github.com/

Launch GitHub Desktop and...

* In GitHub Desktop -> Preferences, log into your GitHub account
* In GitHub Desktop also do "Install Command Line Tool..."

* (everything you do by clicking in the Desktop app you can also do
from the command line, but for now we will stick to using the app).

* Now you have all the tools in place, but you still need to put a code
project into Git...

Put your first code project into git

Choose a folder that already has
some code in it (OK for it to have
subfolders - but it should all be
code and text files, not data or
output), or choose the name of a
new folder that you will put code
into later.

Launch the GitHub Desktop app
on your computer

Do File -> New Repository...

And you will get this box ===>

Create a New Repository

Name

{ fepository name

Description

Local Path

[Users/pm7/Documents/Classes/2020 Effective

| Initialize this repository with a README

Git Ignore

None

License

None

Cancel

1. Type the name of the
existing folder, or the
new folder you want to
create

2. Add some words
describing it

3. Use Choose... to navigate to
where the folder is, or where
you want it to be (the parent
directory of the one where
you project is). No need to
initialize with a README.

4. For Git Ignore choose: Python

5. For License choose:
MIT License

6. Then click this!

oublic or private?

* When you make a new repo and . _
publish it to GitHub you now can Fansal Repasitony
choose to make it public or private

GitHub.com GitHub Enterprise Server

* It used to be that you had to pay to

make it private - that it no longer Name

the case. ST
* | prefer to keep things public by T

default, except under e

circumstances where | really need

them to be private. % Keep this code private
* For this class I'd suggest you make

your c.Iasswork repo public, so | can —
see it if needed, but the choice is

up to you.

Unclick?

What you did...

You made Git on your computer know that you want it to keep track of the code
project in this folder

In that folder it created a hidden directory called .git. That is where is stores
infohrmation on all the changes you make to code there. You never need to look
in this.

| did not suggest addingda README because it just adds an empty file in

"Markdown" format. I'd prefer that Lou write your own README as a text file
because it is simpler and more portable.

You added a LICENSE text file that says anyone can use this code

You added a hidden text file called .gitignore that has a long list of file types for
which Git will not keep track of changes. One of these would be the ".pyc" files
that Python automatically creates for any module you write - it is a compiled
version of that module.

If you had any code in the folder to begin with it also automatically "committed”
them with the message "Initial commit"

Next you want to push this repository to GitHub in the cloud,
using the GitHub Desktop app on your laptop

Make sure you
are on the .

"Changes" tab < e
(the History tab

shows past

Changes

0 changed files

changes)

Bl summary (required)
If you need to
save any
changes locally,
you typein a
Summary and

Commit to master

then commit

v Current Branch vi||ia Push origin
T master Last fetched 22 minutes ago

1+

No local changes

There are no uncommitted changes in this repository. Here are some friendly suggestions
for what to do next.

Push 1 commit to the origin remote

You have one local commit waiting to be pushed to GitHub.
Push origin

Always available in the toolbar when there are local commits waiting to be
pushedor ¥ P

Open the repository in your external editor
Select your editor in Preferences Open in TextMate

Repositorymenuor 3 ¢ A

View the files of your repository in Finder

Repository menuor 3 ¢ F Show in Finder

Open the repository page on GitHub in your browser

Repository menuor ¥ ¢ G View on GitHub

You can add more detail

in the Description box,
but it is not required

Undo

Then click on the
"Push origin"
button to send a
copy of your
code project to
the GitHub cloud

Concepts & « = o =
. :
VO Ca b u ‘ a ry LOCAL REPOSITORY ngﬁiﬁﬁggv Al EamR

Code project
on your laptop
* Your code project is just a folder (and any subfolders) with code and other text files.

* When you tell git to make this code project a "Repository" then git adds a hidden folder ".git" to your folder where it
k%eps a copy of your files and a history of all the changes you make. That is the "Local Repository" in the figure
above.

((

Copy of code project

= GitHub in =\ |= on remote machine,
- = like fjord

the cloud

* "repo" is the slang for Repository. Use it in casual conversation with friends so they will know you are cool.

* Every time you change a file in the folder (add, delete, rename, or edit) git will keep track, and then when you
"commit" the changes they will be part of your local repository.

* Then you "push" your local repository to the cloud: your GitHub account. Mysteriously this remote repo is always
referred to as "origin", even though the code actually originated from your laptop.

* Finally you can "clone" the remote repository to any other machine (like fjord) and it will appear as a folder with
your code in it. If you want to update the code on the remote machine you just "pull" it from the remote repo by
using the command: "ﬂit ull". You do this using the linux terminal and you have to have navigated to be inside
the folder containing the code project.

* We'll go over the details of the clone step in a few slides.

Figure from: https://rubygarage.org/blog/most-basic-git-commands-with-examples

https://rubygarage.org/blog/most-basic-git-commands-with-examples

step 3

PUSH

Nangesd) . . et

— ¢ ’ L
REMOTE LOCAL REPOSITORY

LOCAL REPOSITORY

ReposiTorRY step 4

— GitHub in
' the cloud

* A very simple "one-way" workflow consists of:
1. edit code on your laptop and save the changes
2. commit the changes using GitHub Desktop

3. push the changes to the remote repo using the "Push origin" button in
GitHub Desktop

4. on the remote machine update the code by using "git pull” from the
command line

5. now you can run the code on the remote machine, confident that it is
exactly the same as on your laptop. Of course for this to work your code
has to be written to work on the remote machine.

Copy of code

L
5

=
v

project on remote
machine

Code project
on your laptop

Every time you change a file in the folder (add, delete, rename, or edit) git

will keep track

Here is what the app looks like
after | made (and saved) an edit
to one of my programs in the
repo.

Note that in the right panel it
shows a focus of exactly what
lines changed.

If you feel you are done with

making changes in your current

editing session (maybe at the

end of the day) you:

1. add a summary of the
changes

2. Click on "Commit to master”

3. "Click on Push origin"

Q Current Repository « g CurrentBranch Fetch origin

pmec < master Last fetched 21 minutes ago

Changes 1 History plot_ctd_data.py

1 changed file @@ -77,6 +77,9 @@ plt.savefig(out_fn_1)
77 77

plot-Cel ooy [*] 78 78 # version 2: use pandas “read_csv" method
79 79

[+# NOTE: I really should determin the “skiprows" dynamically, e.g. by first re
ading the

{38l +# file line by line and seeing which line number has "END OF HEADER"

82 s

8@ 83 yn_list = ['Pressure [dbar]', 'Depth [m]', 'Temperature [deg C]', 'Fluoresenc
e', 'PAR',

81 84 ‘Salinity', ‘DO [ml/L]', 'DO [uM]', 'nrec']

82 85 df = pd.read_csv(in_fn, skiprows=570, header=None, names=vn_list, delim_white
space=True)

a Update plot_ctd_data.py

Description

i+

Commit to master

More git lingo: "master”

* The term "master" refers to the "branch" of the repo you are working
on. In GitHub you can make other branches, e.g. to test out some
new code while you still want the old code to be functional. We will

not be using branches in this class, but you may find them useful
sometime.

* For our purposes, you can just think of "master"” as meaning "the
version of my code project that has the most recent changes
committed”.

& C {} & github.com/parkermac/pmec Q %« B o s * H

22 Apps M Gmail Calendar @ Contacts ¢ Drive [EJ EffCom [EJ LiveOcean EJ News [E5 Weather [EJ Current EJ PMSites EJ UW [E3 Classes » B Other Bookmarks
| L] O Pull requests Issues Marketplace Explore A 4+~ "1
C O I l I I l g] parkermac / pmec @uUnwatch~ 1 KStar 0 Yrork 0
<> Code Issues 0 Pull requests 0 Actions Projects 0 Wiki Security 0 Insights Settings

° I n O rd e r fo r "g it p u I I n to Code for the Effective Computing 2020 class Edit

Manage topics

WO r k O n t h e re m Ote < 4 commits ¥ 1 branch @ 0 packages © 0 releases 42 1 contributor C I i C k O n t h e
maChine you fi rSt have to Create new file = Upload files Find file Clone or

Branch: master v New pull request

" C I O n e n t h e re p O to t h at n parkermac Update plot_ctd_data.py Latest commit 451358 38 minutes ago d OW n I O a d
| O Ca t i O n . M shared added .gitignore 2 days ago b u tto n

B .gitattributes Initial commit 2 days ago

. [E .gitignore added .gitignore 2 days ago

° G O to yo u r g I t h u b ° CO m [first_python_program.py Initial commit 2 days ago
a CCO u nt a n d O pe n yo u r re po [© first_script.sh Initial commit 2 days ago

[2 plot_ctd_data.py Update plot_ctd_data.py 38 minutes ago

t h e re £ test0.py Initial commit 2 days ago

[£) test_input_output.py Initial commit 2 days ago

[E test_my_module.py Initial commit 2 days ago

Help people interested in this repository understal

Create new file Upload files = Find file Clone or download ~

Clone with HTTPS ® Use SSH
Use Git or checkout with SVN using the web URL.

Then copy the link it

https://github.com/parkermac/pmec.git [makes by clicking on
the clipboard icon

Open in Desktop Download ZIP
Z gays ago

Cloning - last step

* Finally, logon to your remote machine (fjord) and cd to where you want the cloned repo to end up
-e.g. /data1/effcom/[username]/

e and then type:
* git clone [paste in the URL you copied]
* and your directory will appear, full of your code!

* If you make new changes on your laptop, commit and push them, then all you have to do on fjord
the next time is type:

e git pull

* from inside the directory you made, and then code will be updated to the most recent master
version.

* Note: if you created your repo as private, then you will likely have to issue the command:
* unset SSH ASKPASS
* before doing git clone [...]. Then it will ask for your GitHub password.
* You can add this as a line in your .bashrc on fjord.

My own cloning screen shots, on fjord:

[NoN] ' pm7 — parker@fjord:/datal/parker — ssh p;ri;er@fjord.ocean.washington‘edu —110x36
Last login: Sun Apr 26 08:07:08 on ttys@0l

Note: if you put the repo in the wrong

The default interactive shell is now zsh.

-To update your account to use zsh, please run ‘chsh -s /bin/zsh’. p|ace, JUSt delete |t and Start agaln Glt
For more details, please visit https://support.apple.com/kb/HT208050.

[Parkers-MacBook-Pro:~ pm7$ fjo 1 :

|parker@fjord.ocean.washington.edu's password: won t mlnd'

Last login: Fri Apr 24 13:00:11 2020 from c-73-221-128-168.hsd1l.wa.comcast.net
[[parker@fjord ~1$ cdpm

[[parker@fjord parkerl$ 1s

LiveOcean LiveOcean_output ptools_data tools wcofs_data
LiveOcean_data ptools ptools_output tools_output
[parker@fjord parkerl$ git clone https://github.com/parkermac/pmec.git

LivouLCan_uawva PLUULD PLUUL)_UULPUL LU\JLD_UULPUL
[[parker@fjord parkerl$ git clone https://github.com/parkermac/pmec.git
Initialized empty Git repository in /datal/parker/pmec/.git/

remote: Enumerating objects: 23, done.

remote: Counting objects: 100% (23/23), done.

remote: Compressing objects: 100% (18/18), done. When I try to use

remote: Total 23 (delta 4), reused 22 (delta 3), pack-reused @ "n, . "
git pull" from

Unpacking'objects: 100% (23/23), done. . " "
[[parker@fjord parkerl$ 1ls Now the d|rectory pmec inside omec it tells
me it is already up

LiveOcean m=Qcean_output ptools ptools_output tools_output
LiveOcean_dat m ptools_data tools wcofs_data 1
[parker@fjord \sarkes# exists
to date.

LivouLCan_uawva ’JIIICL PLUUL)_UOLO LUvU LD wWLwviID_uaia

[[parker@fjord parkerl$ ls -la pmec

total 44

drwxr-xr-x. 4 parker parker 4096 Apr 26 12:15 .

drwxr-xr-x. 13 parker parker 4096 Apr 26 12:15 ..

-rw-rw-r--. 1 parker parker 560 Apr 26 12:15 first_python_program.py

—-rwxrwxr-x. 1 parker parker 1473 Apr 26 12:15 first_script.sh

‘drwxrwxr—x. 8 parker parker 4096 Apr 26 12:15 .git . S e N A I
-rw-rw-r——. 1 parker parker 66 Apr 26 12:15 .gitattributes [[parker@fjord parker]$ cd pmec
-rw-rw-r--. 1 parker parker 16 Apr 26 12:15 .gitignore .

-rw-rw-r-—. 1 parker parker 2897 Apr 26 12:15 plot_ctd_data.py and pmec has my [[parker@fJ_ord pmecl$

drwxrwxr-x. 2 parker parker 25 Apr 26 12:15 shared d .. [parker@fjord pmec]$

—-rw-rw-r——. 1 parker parker 301 Apr 26 12:15 test@.py code in it [[parker@fjord pmecl$ git pull
—-rw-rw-r-—. 1 parker parker 1927 Apr 26 12:15 test_input_output.py Already up—to—date.

-rw-rw-r--. 1 parker parker 798 Apr 26 12:15 test_my_module.py

[parker@fjord pmecl$

[parker@fjord parker]$

Resources

* This one is the best Git tutorial | have found, although it does
everything from the command line. Nonetheless, very clear on the
concepts:

* https://rubygarage.org/blog/most-basic-git-commands-with-examples

e General advice in installing Git anywhere (e.g. in linux):
* https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

* Another tutorial from Software Carpentry
* http://swcarpentry.github.io/git-novice/

* And some thoughts about collaborating using GitHub (which we will
get to in the second Git lecture):

* https://uoftcoders.github.io/studyGroup/lessons/git/collaboration/lesson/

https://rubygarage.org/blog/most-basic-git-commands-with-examples
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://swcarpentry.github.io/git-novice/
https://uoftcoders.github.io/studyGroup/lessons/git/collaboration/lesson/

